3.106 \(\int \frac{-a+b \cot (c+d x)}{(a+b \cot (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=174 \[ -\frac{2 b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right )^2 \sqrt{a+b \cot (c+d x)}}-\frac{4 a b}{3 d \left (a^2+b^2\right ) (a+b \cot (c+d x))^{3/2}}-\frac{(-b+i a) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a-i b}}\right )}{d (a-i b)^{5/2}}+\frac{(b+i a) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a+i b}}\right )}{d (a+i b)^{5/2}} \]

[Out]

-(((I*a - b)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(5/2)*d)) + ((I*a + b)*ArcTanh[Sqrt[a
 + b*Cot[c + d*x]]/Sqrt[a + I*b]])/((a + I*b)^(5/2)*d) - (4*a*b)/(3*(a^2 + b^2)*d*(a + b*Cot[c + d*x])^(3/2))
- (2*b*(3*a^2 - b^2))/((a^2 + b^2)^2*d*Sqrt[a + b*Cot[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.381808, antiderivative size = 174, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {3529, 3539, 3537, 63, 208} \[ -\frac{2 b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right )^2 \sqrt{a+b \cot (c+d x)}}-\frac{4 a b}{3 d \left (a^2+b^2\right ) (a+b \cot (c+d x))^{3/2}}-\frac{(-b+i a) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a-i b}}\right )}{d (a-i b)^{5/2}}+\frac{(b+i a) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a+i b}}\right )}{d (a+i b)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(-a + b*Cot[c + d*x])/(a + b*Cot[c + d*x])^(5/2),x]

[Out]

-(((I*a - b)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(5/2)*d)) + ((I*a + b)*ArcTanh[Sqrt[a
 + b*Cot[c + d*x]]/Sqrt[a + I*b]])/((a + I*b)^(5/2)*d) - (4*a*b)/(3*(a^2 + b^2)*d*(a + b*Cot[c + d*x])^(3/2))
- (2*b*(3*a^2 - b^2))/((a^2 + b^2)^2*d*Sqrt[a + b*Cot[c + d*x]])

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{-a+b \cot (c+d x)}{(a+b \cot (c+d x))^{5/2}} \, dx &=-\frac{4 a b}{3 \left (a^2+b^2\right ) d (a+b \cot (c+d x))^{3/2}}+\frac{\int \frac{-a^2+b^2+2 a b \cot (c+d x)}{(a+b \cot (c+d x))^{3/2}} \, dx}{a^2+b^2}\\ &=-\frac{4 a b}{3 \left (a^2+b^2\right ) d (a+b \cot (c+d x))^{3/2}}-\frac{2 b \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt{a+b \cot (c+d x)}}+\frac{\int \frac{-a \left (a^2-3 b^2\right )+b \left (3 a^2-b^2\right ) \cot (c+d x)}{\sqrt{a+b \cot (c+d x)}} \, dx}{\left (a^2+b^2\right )^2}\\ &=-\frac{4 a b}{3 \left (a^2+b^2\right ) d (a+b \cot (c+d x))^{3/2}}-\frac{2 b \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt{a+b \cot (c+d x)}}-\frac{(a-i b) \int \frac{1-i \cot (c+d x)}{\sqrt{a+b \cot (c+d x)}} \, dx}{2 (a+i b)^2}-\frac{(a+i b) \int \frac{1+i \cot (c+d x)}{\sqrt{a+b \cot (c+d x)}} \, dx}{2 (a-i b)^2}\\ &=-\frac{4 a b}{3 \left (a^2+b^2\right ) d (a+b \cot (c+d x))^{3/2}}-\frac{2 b \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt{a+b \cot (c+d x)}}+\frac{(i a-b) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \cot (c+d x)\right )}{2 (a-i b)^2 d}-\frac{(i a+b) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \cot (c+d x)\right )}{2 (a+i b)^2 d}\\ &=-\frac{4 a b}{3 \left (a^2+b^2\right ) d (a+b \cot (c+d x))^{3/2}}-\frac{2 b \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt{a+b \cot (c+d x)}}+\frac{(a+i b) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \cot (c+d x)}\right )}{b (i a+b)^2 d}+\frac{(i (i a+b)) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \cot (c+d x)}\right )}{(a+i b)^2 b d}\\ &=-\frac{(i a-b) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a-i b}}\right )}{(a-i b)^{5/2} d}+\frac{(i a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a+i b}}\right )}{(a+i b)^{5/2} d}-\frac{4 a b}{3 \left (a^2+b^2\right ) d (a+b \cot (c+d x))^{3/2}}-\frac{2 b \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt{a+b \cot (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 5.77522, size = 232, normalized size = 1.33 \[ \frac{\sin (c+d x) (b \cot (c+d x)-a) \left (-\frac{2 b (a+b \cot (c+d x)) \left (\left (3 b^3-9 a^2 b\right ) \cot (c+d x)-11 a^3+a b^2\right )}{\left (a^2+b^2\right )^2}+\frac{3 i (a+b \cot (c+d x))^{5/2} \left ((a+i b)^{7/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a-i b}}\right )-(a-i b)^{7/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a+i b}}\right )\right )}{(a-i b)^{5/2} (a+i b)^{5/2}}\right )}{3 d (a+b \cot (c+d x))^{5/2} (a \sin (c+d x)-b \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(-a + b*Cot[c + d*x])/(a + b*Cot[c + d*x])^(5/2),x]

[Out]

((-a + b*Cot[c + d*x])*(((3*I)*((a + I*b)^(7/2)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a - I*b]] - (a - I*b)^(7
/2)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a + I*b]])*(a + b*Cot[c + d*x])^(5/2))/((a - I*b)^(5/2)*(a + I*b)^(5
/2)) - (2*b*(a + b*Cot[c + d*x])*(-11*a^3 + a*b^2 + (-9*a^2*b + 3*b^3)*Cot[c + d*x]))/(a^2 + b^2)^2)*Sin[c + d
*x])/(3*d*(a + b*Cot[c + d*x])^(5/2)*(-(b*Cos[c + d*x]) + a*Sin[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.059, size = 3055, normalized size = 17.6 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a+b*cot(d*x+c))/(a+b*cot(d*x+c))^(5/2),x)

[Out]

1/d*b^5/(a^2+b^2)^3/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/
2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/d*b^5/(a^2+b^2)^3/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2
)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/4/d*b^5/(a^2+b^2)^(7/2)*ln((a+b*cot(d*
x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/4/d*
b^5/(a^2+b^2)^(7/2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)-6/d*b/(a^2+b^2)^2/(a+b*cot(d*x+c))^(1/2)*a^2-4/3*a*b/(a^2+b^2)/d/(a+b*cot(d*x+c))^
(3/2)-1/2/d*b/(a^2+b^2)^3*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/
2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-3/d*b/(a^2+b^2)^3/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c
))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4+1/2/d*b/(a^2+b^2)^3*ln((a+b*cot(d*x
+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+3/d
*b/(a^2+b^2)^3/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(
2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4-5/4/d*b/(a^2+b^2)^(7/2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1
/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-2/d*b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)
-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3
-3/d*b/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^
(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^5+2/d*b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*c
ot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+3/d*b/(a^2+b^2)^(7/2)/(2*(a
^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*
a)^(1/2))*a^5+5/4/d*b/(a^2+b^2)^(7/2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(
a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-5/4/d*b^3/(a^2+b^2)^(7/2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/d/b/(a^2+b^2)^(5/2)/
(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/
2)-2*a)^(1/2))*a^5-3/d*b^3/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)
-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-1/d/b/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2
)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^7+5/d*b^3/(
a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(
2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+7/d*b^5/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(
1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-1/d/b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^
(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)
)*a^5+3/d*b^3/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2
)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+1/d/b/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(
a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^7-5/d*b^3/(a^2+b^2)^(7/2
)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(
1/2)-2*a)^(1/2))*a^3-7/d*b^5/(a^2+b^2)^(7/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2
*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-1/4/d/b/(a^2+b^2)^(7/2)*ln(b*cot(d*x+c)+a+(a+b*c
ot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^6+5/4/d*b^3/(a
^2+b^2)^(7/2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d/b/(a^2+b^2)^(7/2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*co
t(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^6+2/d*b^3/(a^2+b^2)^3/(2*(a^2+b^2)^(1/2)-2*a)^(1/2
)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/4/d/b/(
a^2+b^2)^3*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2
)^(1/2)+2*a)^(1/2)*a^5-3/4/d*b^3/(a^2+b^2)^3*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^
(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-2/d*b^3/(a^2+b^2)^3/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arcta
n((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+3/4/d*b^3/(a^2+b
^2)^3*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/
2)+2*a)^(1/2)*a-1/4/d/b/(a^2+b^2)^3*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^
2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^5+2/d*b^3/(a^2+b^2)^2/(a+b*cot(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \cot \left (d x + c\right ) - a}{{\left (b \cot \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a+b*cot(d*x+c))/(a+b*cot(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*cot(d*x + c) - a)/(b*cot(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a+b*cot(d*x+c))/(a+b*cot(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a+b*cot(d*x+c))/(a+b*cot(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \cot \left (d x + c\right ) - a}{{\left (b \cot \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a+b*cot(d*x+c))/(a+b*cot(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((b*cot(d*x + c) - a)/(b*cot(d*x + c) + a)^(5/2), x)